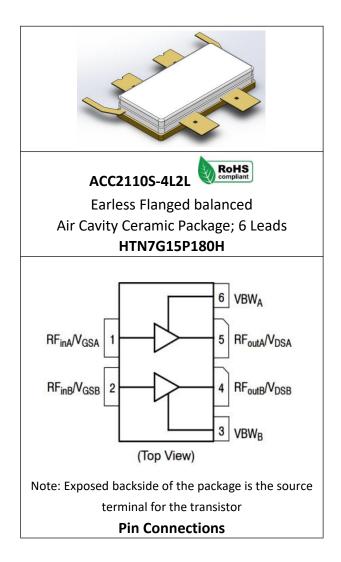
# WATTELH

# HTN7G15P180H 180W, 1300 - 1500 MHz LDMOS Amplifier

Product datasheet

#### Description


The HTN7G15P180H is an unmatched discrete LDMOS Power Amplifier with 180W saturated output power covering frequency range from 1300 - 1500 MHz.

#### **Features**

- Operating Frequency Range: 1300-1500 MHz
- Operating Drain Voltage: 20-28V
- Saturation Output Power: 180W
- Power Average: 30.2W
- Device can be used on a single-ended or in a push-pull configuration. Doherty application applicable
- External pins to improve VBW
- Excellent thermal stability due to low thermal resistance package
- Enhanced robustness design without device degradation
- Efficiency: 41%@1457MHz, WCDMA
- Gain: 19.8dB@1457MHz, WCDMA

## **Applications**

- 3GPP 5G NR FR1
  n50/51/74/75/76/91/92/93/94
- 4G-LTE B11/21/50/51/74/75/76
- Amplifier for Micro and Macro Base Stations
- Repeaters/DAS
- Mobile Infrastructure
- Broadband communication base station
- L-band communication transmitter
- Radar
- Digital pre-distortion correction system



## **Ordering Information**

| Part Number     | Description        |
|-----------------|--------------------|
| HTN7G15P180H    | Tray Package       |
| HTN7G15P180HEVB | 1447- 1467 MHz EVB |



Product datasheet

## **Typical Performance**

#### **RF Characteristics (Pulsed CW)**

| Freq (MHz) | P3dB (dBm) | P3dB (W) | Eff (%) | Gain (dB) |
|------------|------------|----------|---------|-----------|
| 1447       | 52.5       | 177.8    | 58.5    | 19.9      |
| 1457       | 52.5       | 177.8    | 57.8    | 19.9      |
| 1467       | 52.4       | 173.8    | 57.1    | 19.8      |

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQA= 550mA, VGSB= 0.4V, PW = 100us, DC= 10% test on WATECH Application Board

#### **RF Characteristics (WCDMA)**

| Freq (MHz) | Gain (dB) | Eff (%) | Output PAR (dB) | ACPR*<br>@5MHz (dBc) |
|------------|-----------|---------|-----------------|----------------------|
| 1447       | 19.9      | 41.6    | 7.4             | -32.2                |
| 1457       | 19.9      | 41.4    | 7.5             | -32.8                |
| 1467       | 19.8      | 41.1    | 7.5             | -33.6                |

Test conditions unless otherwise noted: 25 °C, VVDD = +28Vdc, IDQA= 550mA, VGSB= 0.4V, PAVG = 44.8 dBm 1C-WCDMA 5MHz Signal, 9.9 dB PAR @ 0.01% CCDF test on WATECH Application Board

\*Uncorrected DPD

#### **RF Characteristics (LTE)**

| Freq (MHz) | Gain (dB) | Eff (%) | Output PAR (dB) | ACPR*<br>@5MHz (dBc) |
|------------|-----------|---------|-----------------|----------------------|
| 1447       | 19.8      | 41.0    | 7.5             | -30.3                |

Test conditions unless otherwise noted: 25 °C, VVDD = +28Vdc, IDQA= 550mA, VGSB= 0.4V, PAVG = 44.8 dBm 1C-LTE 20 MHz Signal, 10 dB PAR @ 0.01% CCDF test on WATECH Application Board

\*Uncorrected DPD

#### **Absolute Maximum Ratings**

| Parameter                              | Range/Value | Unit |
|----------------------------------------|-------------|------|
| Drain voltage (VDSS)                   | -0.5 to +65 | V    |
| Gate voltage (V <sub>GS</sub> )        | -5 to +10   | V    |
| Storage Temperature (Tstg)             | -55 to +150 | °C   |
| Junction Temperature (T <sub>J</sub> ) | -40 to +225 | °C   |



Product datasheet

## **Electrical Specification**

#### DC Characteristics

| Parameter                                            | Conditions         | Min | Тур | Max | Unit |
|------------------------------------------------------|--------------------|-----|-----|-----|------|
| Breakdown Voltage V(BR)DSS                           | Vgs=0V, Ids=108uA  | 65  | -   | -   | V    |
| Gate-Source Threshold<br>Voltage V <sub>GS(th)</sub> | Vgs=Vds, Ids=108uA | -   | 1.5 | -   | V    |
| Drain Leakage Current IDSS                           | Vgs=0V, Vds=65V    | -   | -   | 10  | uA   |
| Gate Leakage Current Igss                            | Vgs=5V, Vds=0V     | -   | -   | 1   | uA   |

#### Load Mismatch Test

| Condition                                                              | Test Result |
|------------------------------------------------------------------------|-------------|
| VSWR=20:1, at all Phase Angles, VDD = +28Vdc, IDQ = 550mA, VGSB= 0.4V, |             |
| PW = 100us, DC= 10%, 177.8W Ppeak, Frequency 1457 MHz, test on         | No Device   |
| WATECH Application Board                                               | Degradation |

#### Thermal Information

| Parameter              | Condition              | Value (Typ) | Unit  |
|------------------------|------------------------|-------------|-------|
| Thermal Resistance     | Tcase= 80°C, CW 180W   | 0.4         | °C /W |
| Junction to Case (Rтн) | TCASE- 80 C, CVV 180VV | 0.4         | C/W   |

#### Load Pull Performance

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ= 400mA, PW = 40us, DC= 4%

|       | Max Output Power (P1dB) |             |              |               |        |       |  |
|-------|-------------------------|-------------|--------------|---------------|--------|-------|--|
| Freq  | Z_source                | Z_load [1]  | Gain<br>(dB) | P1dB<br>(dBm) | P1dB   | Eff   |  |
| (MHz) | (Ω)                     | (Ω)         | (UD)         | (автт)        | (W)    | (%)   |  |
| 1400  | 1.54-j*4.97             | 1.79-j*4.62 | 21.62        | 50.80         | 120.23 | 59.25 |  |
| 1500  | 3.04-j*4.46             | 1.45-j*4.67 | 21.71        | 50.68         | 116.95 | 57.19 |  |

[1] Load impedance for optimum P1dB pout

|       | Max Drain Efficiency (P1dB) |                   |       |               |       |       |
|-------|-----------------------------|-------------------|-------|---------------|-------|-------|
| Freq  | Z_source                    | <b>Z_load</b> [2] | Gain  | P1dB<br>(dBm) | P1dB  | Eff   |
| (MHz) | (Ω)                         | (Ω)               | (dB)  | (ubm)         | (W)   | (%)   |
| 1400  | 1.54-j*4.97                 | 4.31-j*5.29       | 24.23 | 48.91         | 77.80 | 69.89 |
| 1500  | 3.04-j*4.46                 | 3.67-j*3.86       | 24.67 | 48.81         | 76.03 | 69.45 |

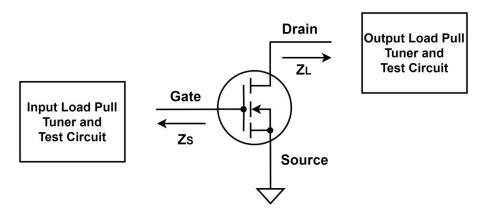
[2] Load impedance for optimum P1dB efficiency

#### HTN7G15P180H



## 180W, 1300 - 1500 MHz LDMOS Amplifier

Product datasheet

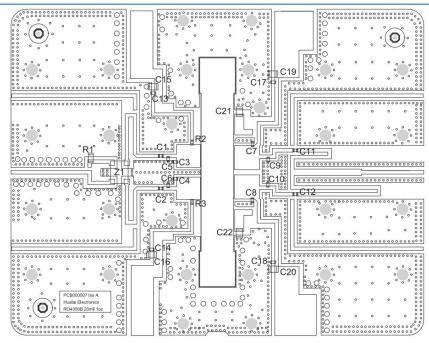

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ= 400mA, PW = 40us, DC= 4%

|       | Max Output Power (P3dB) |             |      |       |        |       |  |
|-------|-------------------------|-------------|------|-------|--------|-------|--|
|       |                         |             |      |       |        | Eff   |  |
| (MHz) | (Ω)                     | (Ω)         | (dB) | (dBm) | (W)    | (%)   |  |
| 1400  | 1.48-j*4.84             | 1.51-j*5.52 | 21.3 | 51.76 | 149.97 | 62.61 |  |
| 1500  | 2.84-j*4.73             | 1.35-j*5.24 | 21.9 | 51.64 | 145.88 | 63.07 |  |

[3] Load impedance for optimum P1dB pout

|               | Max Drain Efficiency (P3dB) |                   |              |               |             |            |  |
|---------------|-----------------------------|-------------------|--------------|---------------|-------------|------------|--|
| Freq<br>(MHz) | Z_source<br>(Ω)             | Z_load [2]<br>(Ω) | Gain<br>(dB) | P3dB<br>(dBm) | P3dB<br>(W) | Eff<br>(%) |  |
| 1400          | 1.48-j*4.84                 | 3.08-j*5.98       | 23.64        | 50.34         | 108.18      | 72.37      |  |
| 1500          | 2.84-j*4.73                 | 2.84-j*4.79       | 24.69        | 49.72         | 93.76       | 73.50      |  |

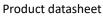
[4] Load impedance for optimum P1dB efficiency



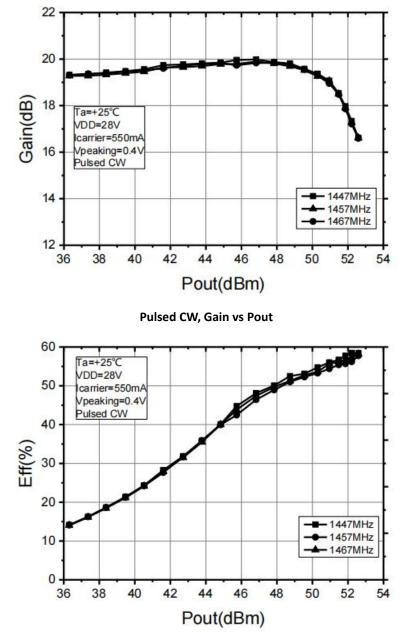

*Z\_source* : Measured impedance presented to the input of the device at the package reference plane *Z\_load* : Measured impedance presented to the output of the device at the package reference plane

Product datasheet

#### HTN7G15P180H 1447 - 1467 MHz Reference Design

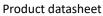

WTECH

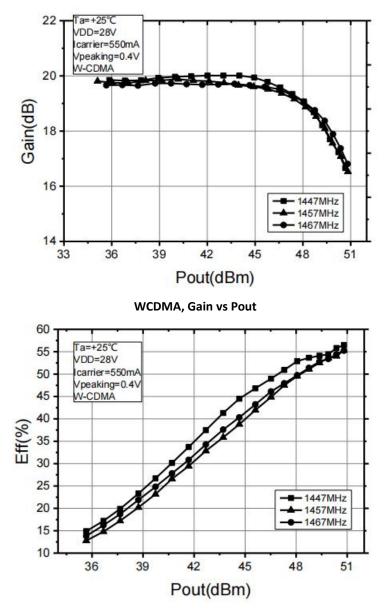



**EVB Layout** 

#### Bill of Materials (BoM) - HTN7G15P180H 1447 - 1467 MHz Reference Design

| Reference                          | Value                                               | Description                      | Manufacturer | P/N            |
|------------------------------------|-----------------------------------------------------|----------------------------------|--------------|----------------|
| Q1                                 | -                                                   | 180W, 1300- 1500<br>MHz LDMOS PA | Watech       | HTN7G15P180H   |
| C1,C2,C11,C12,<br>C13, C14,C17,C18 | 30pF                                                | MLCC                             | ATC          | 600S300BT260XT |
| C3,C4                              | 3.3pF                                               | MLCC                             | ATC          | 600S3R3BT260XT |
| C5,C6                              | 3pF                                                 | MLCC                             | ATC          | 600S3R0BT260XT |
| C7,C8                              | 4.7pF                                               | MLCC                             | ATC          | 600S4R7BT260XT |
| C9,C10                             | 2pF                                                 | MLCC                             | ATC          | 600S2R0BT260XT |
| C15,C16,C19,C20<br>C21,C22         | 10uF/50V                                            | MLCC                             | -            | -              |
| R1                                 | 50Ω/1206                                            | Thick Film Resistor              | -            | -              |
| R2,R3                              | 4.7Ω/0603                                           | Thick Film Resistor              | -            | -              |
| Z1                                 | 90°, 3dB Hybrid Couplers                            |                                  | Yantel       | HC1500P03      |
| РСВ                                | RO4350B (er = 3.66), 20 mil (0.508 mm), 35 μm (1oz) |                                  |              |                |



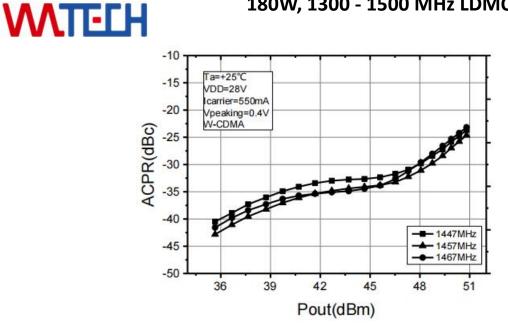






Pulsed CW, Efficiency vs Pout

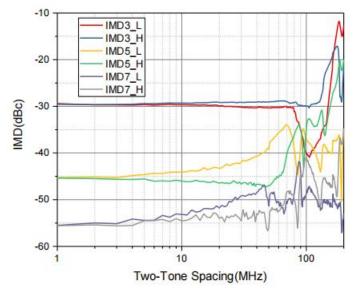
Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQA= 550mA, VGSB= 0.4V, PW = 100us, DC= 10% test test on WATECH Application Board






WCDMA, Efficiency vs Pout

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQA= 550mA, VGSB= 0.4V, 1C-WCDMA 5MHz Signal, 9.9 dB PAR @ 0.01% CCDF test on WATECH Application Board


WATELH

Product datasheet

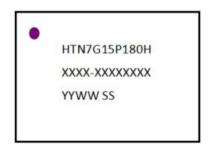


WCDMA, ACPR\_5MHz vs Pout

Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQA= 550mA, VGSB= 0.4V, 1C-WCDMA 5MHz Signal, 9.9 dB PAR @ 0.01% CCDF test on WATECH Application Board

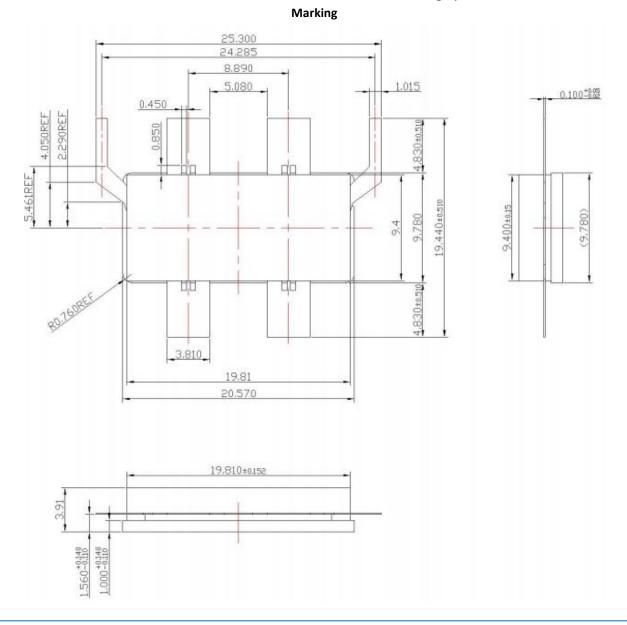





Test conditions unless otherwise noted: 25 °C, VDD = +28Vdc, IDQ=550mA, VGSB= 0.4V, f=1457MHz envelope peak power 30W test on WATECH Application Board

# WATTELH

## HTN7G15P180H 180W, 1300 - 1500 MHz LDMOS Amplifier

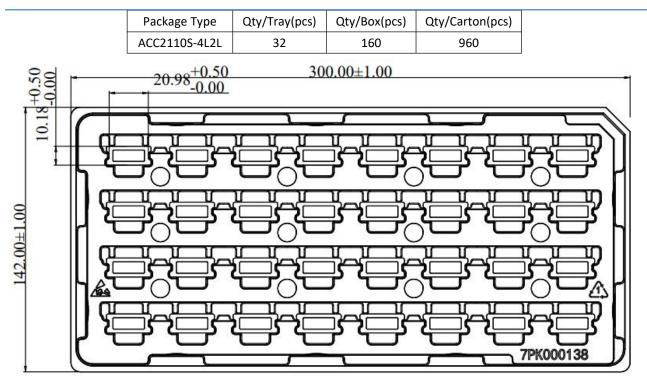

Product datasheet

#### **Package Marking and Dimensions**



- Line1 (fixed): Device name in W/O
- Line2 (unfixed): Marking Lot No in W/O (Sample: E596-20140001)
- Line3 (unfixed): Date Code + SS(sub lot info)

This Marking SPEC only stipulates the content of Marking. For marking requirements such as font and size, please refer to the latest version of "Watech Product Printing Specification"






Product datasheet

#### **Package Dimensions**

## Tape and Reel Information



#### Tape & Reel Packaging Descriptions

## **Handling Precautions**

| Parameter                      | Grade |
|--------------------------------|-------|
| Moisture Sensitivity Level MSL | 3     |

| Parameter                        | Rating    | Standard        |                                       |
|----------------------------------|-----------|-----------------|---------------------------------------|
| ESD – Human Body Model (HBM)     | Class 1B  | JESD22-A114     | ATTENTION<br>OBSERVE PRECAUTIONS      |
| ESD – Human Body Model (MM)      | Class A   | EIA/JESD22-A115 | ELECTROSTATIC<br>SENSITIVE<br>DEVICES |
| ESD – Charged Device Model (CDM) | Class III | JESD22-C101     |                                       |

## **RoHS Compliance**

This product is compliant with the 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment), as amended by Directive 2015/863/EU.



Product datasheet

#### **Datasheet Status**

| Document status       | Product status    | Definition                                 |
|-----------------------|-------------------|--------------------------------------------|
| Objective Datasheet   | Design simulation | Product objective specification            |
| Preliminary Datasheet | Customer sample   | Engineering samples and first test results |
| Product Datasheet     | Mass production   | Final product specification                |

## **Abbreviations**

| Acronym | Definition                                   |  |
|---------|----------------------------------------------|--|
| LDMOS   | Laterally-Diffused Metal-Oxide Semiconductor |  |
| CW      | Continuous Waveform                          |  |

## **Revision history**

| Document ID | Datasheet Status | Release Date | Revision Version                              |
|-------------|------------------|--------------|-----------------------------------------------|
| Rev 2.3     | Product          | March 2023   | New format based on English version datasheet |
| Rev 2.4     | Product          | March 2024   | Update TBD information                        |



Product datasheet

For the latest specifications, additional product information, worldwide sales and distribution locations and information about WATECH:

- Web: <u>www.watechelectronics.com</u>
- Email: <u>MKT@huatai-elec.com</u>

For technical questions and application information:

• Email: <u>MKT@huatai-elec.com</u>

#### **Important Notice**

Information in this document is believed to be accurate and reliable. However, WATECH does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

"Typical" parameters are the average values expected by WATECH in large quantities and are provided for information purposes only. All information and specifications contained herein are subject to change without notice and customers should obtain and verify the latest relevant information before placing orders for WATECH products.

The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Applications that are described herein for any of these products are for illustrative purposes only. WATECH makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using WATECH products, and WATECH accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the WATECH product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third-party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

WATECH products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety- critical systems or equipment, nor in applications where failure or malfunction of a WATECH product can reasonably be expected to result in personal injury, death or severe property or environmental damage. This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.